3.791 \(\int \frac{\sqrt{a+i a \tan (e+f x)} (A+B \tan (e+f x))}{\sqrt{c-i c \tan (e+f x)}} \, dx\)

Optimal. Leaf size=109 \[ \frac{2 \sqrt{a} B \tan ^{-1}\left (\frac{\sqrt{c} \sqrt{a+i a \tan (e+f x)}}{\sqrt{a} \sqrt{c-i c \tan (e+f x)}}\right )}{\sqrt{c} f}-\frac{(B+i A) \sqrt{a+i a \tan (e+f x)}}{f \sqrt{c-i c \tan (e+f x)}} \]

[Out]

(2*Sqrt[a]*B*ArcTan[(Sqrt[c]*Sqrt[a + I*a*Tan[e + f*x]])/(Sqrt[a]*Sqrt[c - I*c*Tan[e + f*x]])])/(Sqrt[c]*f) -
((I*A + B)*Sqrt[a + I*a*Tan[e + f*x]])/(f*Sqrt[c - I*c*Tan[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.219721, antiderivative size = 109, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 45, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {3588, 78, 63, 217, 203} \[ \frac{2 \sqrt{a} B \tan ^{-1}\left (\frac{\sqrt{c} \sqrt{a+i a \tan (e+f x)}}{\sqrt{a} \sqrt{c-i c \tan (e+f x)}}\right )}{\sqrt{c} f}-\frac{(B+i A) \sqrt{a+i a \tan (e+f x)}}{f \sqrt{c-i c \tan (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[a + I*a*Tan[e + f*x]]*(A + B*Tan[e + f*x]))/Sqrt[c - I*c*Tan[e + f*x]],x]

[Out]

(2*Sqrt[a]*B*ArcTan[(Sqrt[c]*Sqrt[a + I*a*Tan[e + f*x]])/(Sqrt[a]*Sqrt[c - I*c*Tan[e + f*x]])])/(Sqrt[c]*f) -
((I*A + B)*Sqrt[a + I*a*Tan[e + f*x]])/(f*Sqrt[c - I*c*Tan[e + f*x]])

Rule 3588

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[(a*c)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1)*(A + B*x), x
], x, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0]

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sqrt{a+i a \tan (e+f x)} (A+B \tan (e+f x))}{\sqrt{c-i c \tan (e+f x)}} \, dx &=\frac{(a c) \operatorname{Subst}\left (\int \frac{A+B x}{\sqrt{a+i a x} (c-i c x)^{3/2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac{(i A+B) \sqrt{a+i a \tan (e+f x)}}{f \sqrt{c-i c \tan (e+f x)}}+\frac{(i a B) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+i a x} \sqrt{c-i c x}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac{(i A+B) \sqrt{a+i a \tan (e+f x)}}{f \sqrt{c-i c \tan (e+f x)}}+\frac{(2 B) \operatorname{Subst}\left (\int \frac{1}{\sqrt{2 c-\frac{c x^2}{a}}} \, dx,x,\sqrt{a+i a \tan (e+f x)}\right )}{f}\\ &=-\frac{(i A+B) \sqrt{a+i a \tan (e+f x)}}{f \sqrt{c-i c \tan (e+f x)}}+\frac{(2 B) \operatorname{Subst}\left (\int \frac{1}{1+\frac{c x^2}{a}} \, dx,x,\frac{\sqrt{a+i a \tan (e+f x)}}{\sqrt{c-i c \tan (e+f x)}}\right )}{f}\\ &=\frac{2 \sqrt{a} B \tan ^{-1}\left (\frac{\sqrt{c} \sqrt{a+i a \tan (e+f x)}}{\sqrt{a} \sqrt{c-i c \tan (e+f x)}}\right )}{\sqrt{c} f}-\frac{(i A+B) \sqrt{a+i a \tan (e+f x)}}{f \sqrt{c-i c \tan (e+f x)}}\\ \end{align*}

Mathematica [A]  time = 4.0114, size = 127, normalized size = 1.17 \[ \frac{\sqrt{a+i a \tan (e+f x)} \left (\cos \left (\frac{1}{2} (e+f x)\right )-i \sin \left (\frac{1}{2} (e+f x)\right )\right ) \left (\sin \left (\frac{1}{2} (e+f x)\right )-i \cos \left (\frac{1}{2} (e+f x)\right )\right ) \left (A+2 B \tan ^{-1}\left (e^{i (e+f x)}\right ) (\sin (e+f x)+i \cos (e+f x))-i B\right )}{f \sqrt{c-i c \tan (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[a + I*a*Tan[e + f*x]]*(A + B*Tan[e + f*x]))/Sqrt[c - I*c*Tan[e + f*x]],x]

[Out]

((Cos[(e + f*x)/2] - I*Sin[(e + f*x)/2])*((-I)*Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(A - I*B + 2*B*ArcTan[E^(I
*(e + f*x))]*(I*Cos[e + f*x] + Sin[e + f*x]))*Sqrt[a + I*a*Tan[e + f*x]])/(f*Sqrt[c - I*c*Tan[e + f*x]])

________________________________________________________________________________________

Maple [B]  time = 0.233, size = 321, normalized size = 2.9 \begin{align*}{\frac{-i}{cf \left ( \tan \left ( fx+e \right ) +i \right ) ^{2}}\sqrt{a \left ( 1+i\tan \left ( fx+e \right ) \right ) }\sqrt{-c \left ( -1+i\tan \left ( fx+e \right ) \right ) } \left ( -2\,iB\ln \left ({ \left ( ac\tan \left ( fx+e \right ) +\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }\sqrt{ac} \right ){\frac{1}{\sqrt{ac}}}} \right ) \tan \left ( fx+e \right ) ac-B\ln \left ({ \left ( ac\tan \left ( fx+e \right ) +\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }\sqrt{ac} \right ){\frac{1}{\sqrt{ac}}}} \right ) \left ( \tan \left ( fx+e \right ) \right ) ^{2}ac+iA\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }\sqrt{ac}\tan \left ( fx+e \right ) +iB\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }\sqrt{ac}+B\ln \left ({ \left ( ac\tan \left ( fx+e \right ) +\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }\sqrt{ac} \right ){\frac{1}{\sqrt{ac}}}} \right ) ac+B\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }\sqrt{ac}\tan \left ( fx+e \right ) -A\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }\sqrt{ac} \right ){\frac{1}{\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }}}{\frac{1}{\sqrt{ac}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e))/(c-I*c*tan(f*x+e))^(1/2),x)

[Out]

-I/f*(a*(1+I*tan(f*x+e)))^(1/2)*(-c*(-1+I*tan(f*x+e)))^(1/2)/c*(-2*I*B*ln((a*c*tan(f*x+e)+(a*c*(1+tan(f*x+e)^2
))^(1/2)*(a*c)^(1/2))/(a*c)^(1/2))*tan(f*x+e)*a*c-B*ln((a*c*tan(f*x+e)+(a*c*(1+tan(f*x+e)^2))^(1/2)*(a*c)^(1/2
))/(a*c)^(1/2))*tan(f*x+e)^2*a*c+I*A*(a*c*(1+tan(f*x+e)^2))^(1/2)*(a*c)^(1/2)*tan(f*x+e)+I*B*(a*c*(1+tan(f*x+e
)^2))^(1/2)*(a*c)^(1/2)+B*ln((a*c*tan(f*x+e)+(a*c*(1+tan(f*x+e)^2))^(1/2)*(a*c)^(1/2))/(a*c)^(1/2))*a*c+B*(a*c
*(1+tan(f*x+e)^2))^(1/2)*(a*c)^(1/2)*tan(f*x+e)-A*(a*c*(1+tan(f*x+e)^2))^(1/2)*(a*c)^(1/2))/(a*c*(1+tan(f*x+e)
^2))^(1/2)/(tan(f*x+e)+I)^2/(a*c)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e))/(c-I*c*tan(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [B]  time = 1.53387, size = 830, normalized size = 7.61 \begin{align*} -\frac{c f \sqrt{-\frac{B^{2} a}{c f^{2}}} \log \left (\frac{4 \,{\left (2 \,{\left (B e^{\left (2 i \, f x + 2 i \, e\right )} + B\right )} \sqrt{\frac{a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt{\frac{c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} e^{\left (i \, f x + i \, e\right )} +{\left (c f e^{\left (2 i \, f x + 2 i \, e\right )} - c f\right )} \sqrt{-\frac{B^{2} a}{c f^{2}}}\right )}}{B e^{\left (2 i \, f x + 2 i \, e\right )} + B}\right ) - c f \sqrt{-\frac{B^{2} a}{c f^{2}}} \log \left (\frac{4 \,{\left (2 \,{\left (B e^{\left (2 i \, f x + 2 i \, e\right )} + B\right )} \sqrt{\frac{a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt{\frac{c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} e^{\left (i \, f x + i \, e\right )} -{\left (c f e^{\left (2 i \, f x + 2 i \, e\right )} - c f\right )} \sqrt{-\frac{B^{2} a}{c f^{2}}}\right )}}{B e^{\left (2 i \, f x + 2 i \, e\right )} + B}\right ) -{\left ({\left (-2 i \, A - 2 \, B\right )} e^{\left (2 i \, f x + 2 i \, e\right )} - 2 i \, A - 2 \, B\right )} \sqrt{\frac{a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt{\frac{c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} e^{\left (i \, f x + i \, e\right )}}{2 \, c f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e))/(c-I*c*tan(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

-1/2*(c*f*sqrt(-B^2*a/(c*f^2))*log(4*(2*(B*e^(2*I*f*x + 2*I*e) + B)*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(
e^(2*I*f*x + 2*I*e) + 1))*e^(I*f*x + I*e) + (c*f*e^(2*I*f*x + 2*I*e) - c*f)*sqrt(-B^2*a/(c*f^2)))/(B*e^(2*I*f*
x + 2*I*e) + B)) - c*f*sqrt(-B^2*a/(c*f^2))*log(4*(2*(B*e^(2*I*f*x + 2*I*e) + B)*sqrt(a/(e^(2*I*f*x + 2*I*e) +
 1))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1))*e^(I*f*x + I*e) - (c*f*e^(2*I*f*x + 2*I*e) - c*f)*sqrt(-B^2*a/(c*f^2)))
/(B*e^(2*I*f*x + 2*I*e) + B)) - ((-2*I*A - 2*B)*e^(2*I*f*x + 2*I*e) - 2*I*A - 2*B)*sqrt(a/(e^(2*I*f*x + 2*I*e)
 + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1))*e^(I*f*x + I*e))/(c*f)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a \left (i \tan{\left (e + f x \right )} + 1\right )} \left (A + B \tan{\left (e + f x \right )}\right )}{\sqrt{- c \left (i \tan{\left (e + f x \right )} - 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))**(1/2)*(A+B*tan(f*x+e))/(c-I*c*tan(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(a*(I*tan(e + f*x) + 1))*(A + B*tan(e + f*x))/sqrt(-c*(I*tan(e + f*x) - 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \tan \left (f x + e\right ) + A\right )} \sqrt{i \, a \tan \left (f x + e\right ) + a}}{\sqrt{-i \, c \tan \left (f x + e\right ) + c}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e))/(c-I*c*tan(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate((B*tan(f*x + e) + A)*sqrt(I*a*tan(f*x + e) + a)/sqrt(-I*c*tan(f*x + e) + c), x)